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we found to be necessary for IAV infection (Pirooz et al., 2014). 
We also confirmed that neither ATG7 (Reggiori et al., 2010) nor 
ATG5 (Zhao et al., 2007) is required for MHV replication, and 
in agreement with the literature, we observed a tendency for 
MHV replication to be dependent on the LC3 proteins (Reg-
giori et al., 2010). Very little is known about the involvement of 
autophagy in the SFV and VaV life cycles. Although it seems 
that, upon SFV infection, there is an accumulation of autopha-
gosomes caused by a block in this pathway, the virus titer is 

unchanged in ATG5−/− MEFs (Eng et al., 2012). VaV appears 
to block autophagosome formation upon infection, but in this 
case, the virus titer is unaffected in ATG3−/− and ATG5−/− MEFs 
or BEC​LIN1−/− embryonic stem cells (Zhang et al., 2006; Mo-
loughney et al., 2011). The results of our screen are consistent 
with these observations, but they also point to a tissue-specific 
interplay between SFV/VaV and autophagy. Although we could 
confirm data from the literature with this screen, we cannot ex-
clude that the results in physiologically relevant target cells or 
in in vivo models might be different from the ones in the im-
mortalized cell lines that we used.

To validate our screening approach and identify uncon-
ventional functions of ATG proteins, we focused on ATG13, 
because its depletion markedly enhanced EMCV replica-
tion, whereas knockdown of other ULK complex components 
(such as ULK1, ULK2, or ATG101) did not. A detailed anal-
ysis confirmed that not only ATG13 but also FIP200 decrease 
EMCV replication independently of their function in autophagy 
(Fig.  10  C). Although FIP200 was not among the significant 
hits in the screen, EMCV replication was strongly up-regulated 
upon its depletion. In contrast to what was found for UVR​AG 
during IAV infection (Pirooz et al., 2014), ATG13 and FIP200, 
possibly in complex, control not virus cell entry but rather 
virus replication. Interestingly, the unconventional function of 
ATG13 and FIP200 is not restricted to EMCV but also controls 
more members of the picornavirus family, i.e., CVB3, CVA21, 
and EV71. It has been shown that picornaviruses induce auto-
phagy upon infection, and this is beneficial for both enterovirus 
71 (Huang et al., 2009; Lee et al., 2014; Fu et al., 2015) and CV 
(Wong et al., 2008; Kemball et al., 2010; Alirezaei et al., 2012, 
2015; Tabor-Godwin et al., 2012), whereas it is still a matter of 
debate whether autophagy has also a proviral role for EMCV 
(Zhang et al., 2011; Chakrabarti et al., 2012). Based on the con-
clusions of these studies, one would expect that depletion of 
any ATG protein that blocks autophagy should inhibit the picor-
navirus life cycle as well. Although we blocked autophagy by 
ATG13 and FIP200 depletion, we did not observe impairment 
in picornaviral life cycles. On the contrary, viral replication and 
subsequent viral particle production were strongly enhanced in 
the absence of these two proteins, even in cells where ATG7 
was simultaneously depleted. It has previously been indicated 
that autophagy is essential for picornavirus infections mostly 
through the use of pharmacological autophagy inhibitors but 
also through BEC​LIN1, VPS34, LC3, and ATG7 knockdown 
(Wong et al., 2008; Zhang et al., 2011; Delorme-Axford et al., 
2014). Pharmacological inhibitors or BEC​LIN1 and VPS34 
depletion affects specific endosomal functions, and this could 
also have an impact on picornaviral infections, depending on 
the cell type. We confirmed, to a certain extent, the inhibitory 
effect of ATG7 knockdown (Figs. 4, 5, 7, and 8), which would 
suggest that this protein, like ATG13 and FIP200, influences 
picornavirus infection through an unconventional role in a dif-
ferent pathway. Alternatively, the fact that picornaviruses can 
exploit more than one pathway for replication, including au-
tophagy (Alirezaei et al., 2015), could explain the relevance of 
ATG proteins in specific cell types, as was shown for pancreatic 
acinar cells, in which ATG5 deletion reduces CV replication as 
well as pathogenesis (Alirezaei et al., 2012).

The notion that ATG13 and FIP200 have important au-
tophagy-independent functions is underlined by the fact that 
although most autophagy-deficient mice, including ULK1−/− 
ULK2−/− animals (Joo et al., 2016), die shortly after birth, 

Figure 7.  ATG13 depletion enhances EMCV and CV replication, but not 
virus cell entry. (A) U2OS cells depleted or not of ATG13 using siRNA for 
48 h were transfected with Renilla luciferase EMCV RNA for 7 h. GPC-
N114 was added or not 1  h after virus inoculation before measuring 
luciferase expression (n = 3). (B) Cells prepared as in A were infected 
with luciferase-expressing EMCV for 7 h. GPC-N114 was added or not 
1 h after virus inoculation before assessing luciferase expression (n = 5).  
(C) Cells prepared as in A were transfected with Renilla luciferase CV RNA 
for 7 h. Guanidine-HCL (Gn-HCl) was added or not 1 h posttransfection 
before measuring luciferase expression (n = 4). (D) Cells prepared as in A 
were infected with luciferase expressing CV for 7 h. Gn-HCl was added 
or not 1 h after virus inoculation before assessing luciferase expression (n 
= 4). (E) Cells were transfected with the cap RNA Renilla-luciferase (Rluc) 
transcript for 7 h and, when indicated, cycloheximide (CHX) was added 
1  h after transfection before determining luciferase expression (n = 3).  
(F) Cells were transfected with the IRES-luciferase RNA transcript for 7 h 
and when indicated, CHX was added 1 h after transfection before mea-
suring luciferase expression. (n = 3). All data are presented relative to 
the control (folds). Error bars represent SEM. *, P < 0.05; **, P < 0.01;  
n.s., not significant. siCtr, scramble siRNA.
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FIP200−/− and ATG13−/− mice die during embryonic devel-
opment (Joo et al., 2011; Hieke et al., 2015; Kaizuka and 
Mizushima, 2015). Our RNA-sequencing analysis supports this 
observation, as a subset of the genes that we found to be dif-
ferentially expressed in absence of ATG13 and FIP200 are in-
volved in transcriptional regulation and development (11 out of 
225 in uninfected cells and 8 out of 68 in infected cells). These 
results are in line with the requirement of ATG13 and FIP200 
in embryonic development in an autophagy-independent 

manner (Chen et al., 2016). A possible link how ATG13 and 
FIP200 regulate this developmental process could be HSBP1, 
which we identified as a new interactor of ATG13 and FIP200 
(Fig. S4), and which is also required for embryonic develop-
ment (Eroglu et al., 2014).

Other scenarios could also explain how ATG13 and FIP200 
deficiency increases picornavirus replication. A large subset of 
differentially regulated genes in ATG13- and FIP200-depleted 
cells (102 out of 293) code for integral or membrane-associated 

Figure 8.  Depletion of ATG13 and FIP200 results in 
higher EMCV and CV production in host cells. (A) The 
indicated genes were depleted of U2OS cells for 48 h 
using siRNA before infecting cells with EMCV at an 
MOI of 0.1 for 24 h and subsequently determining 
the number of surviving cells (n = 3). (B) The culture su-
pernatants of the experiment in A were collected, and 
the virus titer was measured using the TCID50 assay  
(n = 3). (C) Cells prepared as in A were infected with 
CV at an MOI of 0.01 for 48 h before determining 
the number of surviving cells (n = 3). (D) The culture 
supernatants of the experiment in C were collected, 
and virus titer was measured using the TCID50 assay 
(n = 3). All data are presented relative to the control 
(folds). Error bars represent SEM. *, P < 0.05; **, 
P < 0.01; ***, P < 0.001; no symbol indicates not 
significant. siCtr, scramble siRNA.

Figure 9.  Depletion of ATG13 and FIP200 results in higher 
picornavirus production in host cells. (A) Cells were trans-
fected with siRNA against ATG13, FIP200, ATG7, or scram-
ble siRNA (siCtr) for 48 h, and the number of surviving cells 
was determined after 24  h of infection with EMCV-Zn (in 
U2OS cells), EV71 (in U2OS cells), or CVA21 (in HeLa cells) 
at MOI 0.1 (n = 3). (B) The culture supernatants of the exper-
iment in A were collected, and the virus titer was measured 
using the TCID50 assay (n = 3). Error bars represent SEM. *, P 
< 0.05; **, P < 0.01; ***, P < 0.001; no symbol indicates 
not significant. siCtr, scramble siRNA.
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proteins, and although we did not observe major differences in 
viral replication structures in ATG13 knockdown cells, these 
proteins could still participate in the optimal establishment of 
picornaviral replication structures. Because ATG13 has been 
implicated in selective forms of autophagy in mammalian cells 
and plants (Joo et al., 2011; Li et al., 2014), there is also the 
possibility that ATG13 and eventually FIP200 function in one 
of these pathways to prevent picornavirus replication. The exact 
mechanism by which ATG13 and FIP200 affects picornavirus 
genomic RNA replication remains to be established. Therefore, 
the RNA-sequencing and MS datasets that we generated in this 
study are valuable tools for future studies aimed at unraveling the 
precise unconventional cellular function of ATG13 and FIP200.

The proof-of-principle study on FIP200 and ATG13 val-
idated our ATG-specific siRNA screening approach as a plat-
form to identify unconventional roles of ATG proteins. The 
screen thus strongly supports the emerging concept that ATG 
proteins do not participate exclusively in autophagy. It also calls 
for caution in interpreting results on the contribution of auto-
phagy to a specific process that relies solely on the depletion 
of a single ATG protein.

Materials and methods

Antibodies and reagents
The following primary antibodies were used: rabbit anti-LC3 (Novus Bi-
ologicals), mouse anti-Flag (Sigma-Aldrich), mouse anti-tubulin (Sig-
ma-Aldrich), rabbit anti-ATG13 (Sigma-Aldrich), rabbit anti-ULK1 

(Santa Cruz Biotechnology, Inc.), rabbit anti-FIP200 (Bethyl Labora-
tories, Inc.), guinea pig anti-p62 (Progen), rabbit anti–phospho-ATG13 
(S318; Rockland), mouse antienterovirus (Dako), rabbit anti-CV2bc (a 
gift from L. Whitton, Scripps Research Institute, La Jolla, CA), rabbit 
anti-Capsid (EMCV; a gift of A. Palmenberg, University of Wisconsin, 
Madison, WI), mouse anti-dsRNA (English & Scientific Consulting 
Bt.), and rabbit anti-ATG7 (Cell Signaling Technology). Goat anti–
mouse and chicken anti–rabbit Alexa Fluor 488–conjugated antibodies, 
goat anti–mouse and donkey anti–rabbit Alexa Fluor 568–conjugated 
antibodies, goat anti–mouse antibodies, goat anti–rabbit Alexa Fluor 
680–conjugated antibodies, and goat anti–mouse and goat anti–rabbit 
Alexa Fluor 800–conjugated antibodies were used for the visualiza-
tion of the primary antibodies. All secondary antibodies and DAPI 
were from Invitrogen and Thermo Fisher Scientific. Puromycin, guan-
idine hydrochloride, and cycloheximide were purchased from Sigma- 
Aldrich, blasticidin was purchased from Invivogen, and doxycycline 
was purchased from Takara Bio, Inc. GPC-N114 is a nonnucleoside 
inhibitor that targets the enterovirus RNA-dependent RNA polymerase 
and exerts broad-spectrum antiviral activity against all enteroviruses 
(van der Linden et al., 2015).

Cell lines and cell culture
U2OS (a gift from G.  Strous, University Medical Center Utrecht, 
Utrecht, Netherlands), HeLa-mCeaCam1, HEK-mCeaCam1 (Wicht 
et al., 2014), HEK293T-REx, HA-Flag-ATG13 and HA-Flag-FIP200 
(Behrends et al., 2010; Jung et al., 2015), BGM kidney, baby ham-
ster kidney 21 (BHK-21) and HeLa cells, and immortalized ATG13−/− 
mouse embryonic fibroblasts (MEFs; a gift from X. Wang, National 
Institute of Biological Science, Beijing, China) retrovirally transformed 

Figure 10.  RNA sequencing provides insight into the uncon-
ventional function(s) of ATG13 and FIP200. U2OS cells de-
pleted of ATG13, ATG7, or FIP200, or treated with control 
siRNA, were infected or not with CV for 7 h at MOI 1. RNA 
sequencing was performed on isolated RNA as described 
in Materials and methods. (A) Venn diagrams showing up- 
and down-regulated genes in ATG13- and FIP200-depleted 
cells, whose expression was not altered in ATG7 knock-
down cells. The overlapping areas indicate genes that are 
differentially expressed in both ATG13- and FIP200-depleted 
cells. Genes whose transcription is also altered in ATG7- 
depleted cells were not considered, because their differen-
tial expression is very likely linked to one or more functions 
of autophagy. (B) Gene Ontology analysis of the genes that 
were differentially and specifically expressed in ATG13- and 
FIP200-depleted cells, exposed or not to CV. (C) Schematic 
model for the autophagy-dependent and -independent func-
tions of ATG13 and FIP200.
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with an empty vector or with a plasmid carrying HA-ATG13 (Hieke et 
al., 2015), were cultured in DMEM (Thermo Fisher Scientific) supple-
mented with 100 U/ml penicillin, 100 µg/ml streptomycin, and 10% 
FCS at 37°C in 5% CO2 humidified atmosphere. 4 µg/ml blasticidin 
and 2 µg/ml puromycin were added for culturing the HEK293T-REx 
cells expressing HA-Flag-ATG13 or HA-Flag-FIP200 (Behrends et 
al., 2010; Jung et al., 2015). HeLa-mCeaCam1 and HEK-mCeaCam1 
were generated by transducing the cells with mCeaCam1 (murine 
carcinoembryonic antigen-related cell adhesion molecule 1a) using a 
Moloney murine leukemia virus packaging vector (Wicht et al., 2014). 
Stable cell lines were made using G418 selection. HEK293T-REx, HA-
Flag-ATG13, and HA-Flag-FIP200 were generated by retroviral trans-
duction of the according MSCV-i(N-Flag-HA)-IRES-PURO constructs 
(Behrends et al., 2010; Jung et al., 2015).

To induce autophagy, cells were washed two times with Earle’s 
balanced salt solution (EBSS; Sigma-Aldrich) and then incubated in 
the same medium for 2 h.

Virus stocks
Virus stocks were generated and propagated as described previously. 
Fluc-HSV-1 (Paludan virus stock collection), SFV-Rluc was produced 
from the infectious clone SFV-RlucH2 and propagated in BHK cells 
(Pohjala et al., 2011), MHV-2aFLS was propagated on LR7 mouse fi-
broblast cells (de Haan et al., 2003), Fluc-VaV was propagated in Af-
rican green monkey kidney BSC-40 cells (Rodriguez et al., 1988; de 
Vries et al., 2011), and IAV-WSN luciferase pseudovirus was produced 
in a MDCK cell line that stably expresses the HA of IAV-WSN (König 
et al., 2010; de Vries et al., 2011). EMCV, EMCV-Zn wild type (Hato 
et al., 2007), and Rluc-EMCV (Lanke et al., 2009) were generated by 
transfecting runoff transcript RNA from the BamHI linearized pM16.1 
infectious clone into BHK21 cells. The CVB3 and RLuc-CVB3 (Wes-
sels et al., 2005) viruses were generated by transfecting runoff tran-
script RNA from the SalI linearized p53CVB3/T7 infectious clone into 
BGM cells. CVB3, EV68 (Ulferts et al., 2013), EV-71, and CVA21 
(van der Schaar et al., 2013) viruses were propagated in HeLa-R19 
cells, whereas EMCV was propagated in BHK21 cells.

Virus infection
Virus infections were performed at an MOI of 0.2–2 in all the exper-
iments except when determining the amount of surviving cells and 
the virus titer subsequently at 24 h and 48 h after infection. In these 
cases, cells were infected at an MOI of 0.01 for CV and 0.1 for all 
other viruses. The virus titers were determined using a tissue cul-
ture infectious dose assay according to the Reed–Muench method 
(Reed and Muench, 1938).

siRNA-based screens
The customized ON-TAR​GETplus SMA​RTpool human siRNA library 
(Table S1) and the deconvoluted ON-TAR​GETplus SMA​RTpools were 
obtained from GE Healthcare. The screens were run in 96-well plates, 
and the rows of wells on the limits of the plates were not used to avoid 
change in the readout caused by a differential in cell growth. 2 pmol 
siRNA per well was used for single gene knockdown, whereas for mul-
tiple gene depletions, total amounts of 3 pmol (double knockdowns), 
4.5 pmol (triple knockdowns), or 6 pmol (quadruple knockdowns) were 
used. Reverse transfection was conducted according to the manufac-
turer’s protocol using 0.1 µl RNAiMax and 3,000 cells (U2OS, HeLa- 
mCC1 or HEK-mCC1 cells) per well in a final volume of 100  µl 
DMEM containing 100 U/ml penicillin, 100 µg/ml streptomycin, and 
10% FCS. These conditions, which were set with pilot experiments, 
allowed optimal knockdown of the target genes without causing cell 
death (unpublished data). The customized siRNA library also included 

probes knocking down genes known to be relevant for the replication 
of one or more viruses. Runs of the screen where these positive con-
trols gave no change in luciferase activity were discarded and repeated. 
The genes used for this purpose were GBF1 and ARF1 for MHV (Ver-
heije et al., 2008), PI4KA for EMCV (Dorobantu et al., 2015), and 
ATP6V1A for IAV and SFV (Ochiai et al., 1995; Glomb-Reinmund  
and Kielian, 1998).

Typically, cells were processed in two ways after the siRNA-me-
diated knockdown for 48 h. For analyzing endogenous p62 and LC3 
puncta accumulation in order to measure autophagy, cells were fixed 
with 4% PFA and then incubated with the blocking buffer (PBS, 1% 
bovine serum albumin, and 0.1% saponin) before being stained first 
with p62 and LC3 antibody and then with Alexa Fluor 568– and 488–
conjugated secondary antibodies. Nuclei were stained with Hoechst 
33342 (Sigma-Aldrich) during incubation with the secondary antibody. 
To examine virus replication, 50 µl of culture medium was aspired and 
replaced with 50 µl fresh culture medium containing virus strains car-
rying the luciferase gene at an MOI of 0.2. Infections were conducted 
for 6 h for EMCV, VaV, HSV-1, SFV, and MHV and 16 h for IAV before 
lysing the cells and enzymatically measuring luciferase expression. The 
virus infection and LC3 puncta assessment screens were run four times, 
whereas the ones for p62 puncta quantification were run three times.

Luciferase assays
Cells in 96-well plates were washed with PBS and incubated with 50 µl 
lysis buffer (Thermo Fisher Scientific) at room temperature for 15 min 
before storing the cell lysates at −20°C. 25-µl aliquots of thawed cell 
lysate were then used to measure either Firefly or Renilla luciferase ex-
pression (depending on the gene carried by the assayed virus) using ei-
ther the Firefly or Renilla luciferase flash assay kit (both from Thermo 
Fisher Scientific). Alternatively, Renilla luciferase activity was mea-
sured in the following reaction buffer: 45 mM EDTA, 30 mM sodium 
pyrophosphate, 1.425 M NaCl, and 10 µM coelenterazine h (Promega; 
Baker and Boyce, 2014).

Enzymatic activities were measured using a GloMax-Multi De-
tection System (Promega) and the following program: 25 µl substrate, 
2  s delay, and 10  s measuring. Background luminescence was sub-
tracted from each obtained value, and the results were always normal-
ized toward cells transfected with control siRNA.

Analysis of the screen data
Raw luciferase measurements from four independent experiments were 
standardized creating a Z-score. The distance of the Z-score from each 
siRNA pool to the control siRNA was determined from the four inde-
pendent experiments. The median Z-score and the SD of the mean were 
then determined (Table S5). Z-score values below −1.96 and above 
1.96 were considered as statistically significant. Data were finally ex-
pressed in an x–y graph, where the x axis projects the results obtained 
in the screen in the U2OS cells or HEK cells for MHV and the y axis 
projects those acquired in HeLa cells.

Western blot analyses
Cells grown in six-well plates were washed with PBS and harvested in 
100 µl lysis buffer (TBS, 1% Triton-X100, and protease inhibitors) or 
lysed in an alternative lysis buffer (1% Triton X-100, 150 mM NaCl, 
1 mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, 
pH 8.0, protease inhibitors, and 5 mM sodium fluoride) for detection of 
phospho-ATG13. The lysates were incubated on ice for 30 min, vortexed, 
and centrifuged at 14,000 g for 10 min at 4°C. The supernatants were 
collected and mixed with Laemmli loading buffer (Laemmli, 1970). 
Equal protein amounts were separated by SDS-PAGE, and after stan-
dard Western blotting, proteins were detected using specific antibodies  
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and the Odyssey Imaging System (LI-COR Biosciences). Protein sig-
nal intensities (densitometric values) were normalized against a tubulin 
loading control for each sample. Densitometric values were determined 
and quantified on Western blots at nonsaturating exposures using the 
ImageJ software (Schneider et al., 2012).

Long-lived protein degradation assay
The protocol is identical to the one already described, with few modi-
fications (Chan et al., 2007). U2OS cells grown in six-well plates were 
transfected for 48 h with control siRNA or siRNA targeting ATG13, 
ULK1, or FIP200. Subsequently, the medium was exchanged with the 
labeling medium (DMEM and 10% dialyzed FCS containing 0.2 µCi/
ml [14C]-valine + 65 µM valine). After 18 h, the cells were placed into 
chase medium (DMEM, 10% FCS, and 2 mM valine) and incubated for 
additional 4 h to allow degradation of short-lived proteins. Cells were 
then transferred for 2 h in the EBSS medium to induce autophagy or in 
DMEM containing 10% FCS (no autophagy stimulation). The culture 
media were collected, and TCA was added to 10%. After centrifugation 
at 2,000 rpm for 10 min, the radioactivity in the soluble fraction (SF) 
was measured by scintillation counting. In parallel, cells were lysed in 
PBS containing 1% Triton-X and TCA was added to the lysate to 10% 
before freezing the samples overnight at −20°C. The radioactivity of 
TCA-soluble fraction (cytosol) as well as that of the TCA-insoluble 
pellet (pellet) dissolved in Solvable solution (PerkinElmer) was then 
measured after centrifugation at 2,000 rpm for 10 min. Protein degra-
dation was determined as follows: (counts in SF + counts in cytosol)/
(counts in SF + counts in cytosol + counts in pellet).

siRNA and RNA transfections
After deconvolution, individual siRNAs were used for further experi-
ments (Table S4). U2OS cells were transfected for 48 h with 20 nM of 
control siRNA or of siRNA targeting ATG13, ATG7, ATG101, ULK1, 
ULK2, or FIP200 (all from GE Healthcare) using 0.1 µl or 2 µl Li-
pofectamine RNAiMAX (Invitrogen) for 96- or 6-well plate cultures, 
respectively, according to the manufacturer’s protocol. Combinations 
of two different siRNA probes were performed at total concentrations 
of 40 nM and 40 nM of control siRNA were used for these experiments. 
10 ng CVB3 and EMCV Renilla luciferase RNA or 2 ng of Cap and 
IRES (Mengo) Renilla luciferase RNA was transfected into cells in 96-
well plates using 0.1 µl of RNAiMax.

RNA isolation, cDNA synthesis, quantitative real-time PCR,  
and RNA sequencing
Total RNA was isolated from U2OS cells using an RNeasy mini kit 
(QIA​GEN). Isolated RNA was either further processed for RNA 
sequencing or reverse transcribed into cDNA using a TaqMan reverse 
transcription reagents (Thermo Fisher Scientific). Real-time PCR 
was performed on a CFX96 Touch Real-Time PCR Detection System 
(Bio-Rad Laboratories) using the iQ SYBR Green Supermix kit (Bio-
Rad Laboratories) and specific primers (Table S3). Alternatively, the 
Power SYBR Green Cells-to-CT kit (Thermo Fisher Scientific) was 
used according to manufacturer’s protocol to isolate RNA, reverse 
transcribe the RNA, and synthesize cDNA. Quantitative PCR was 
performed in a CFX connect Thermocycler (Bio-Rad Laboratories) 
using specific primers (Table S3). RNA quality was controlled for 
integrity using capillary electrophoresis (Labchip GX; PerkinElmer) 
before RNA sequencing. Sample preparation was performed from 500 
ng total RNA using the QuantSeq 3′ Library Prep kit (Lexogen), and 
50-bp single-end samples were sequenced on an Illumina HiSeq2500. 
Gene expression quantification was performed as follows: The trimmed 
fastQ files were aligned to the human build b37 reference genome 
using hisat/0.1.5-β-goolf-1.7.20 (Kim et al., 2015) with default settings 

(stranded). Before gene quantification, SAMtools/1.2-goolf-1.7.20 
(Li et al., 2009) was used to sort the aligned reads. The gene level 
quantification was performed by HTSeq-count HTSeq/0.6.1p1 (Anders 
et al., 2015) using mode = union. Ensembl version 75 was used as 
gene annotation database (Genome Analysis Facility of the University 
Groningen). Differentially expressed genes were identified using the 
DESeq2 package with standard settings (http​://www​.ncbi​.nlm​.nih​
.gov​/pmc​/articles​/PMC4302049​/). Genes with log2 fold change >0.2 
and p adj <0.1 were considered as differentially expressed. All other 
genes were considered as unchanged in their expression compared with 
control cells. The UniProt website (http​://www​.uniprot​.org​/) was used 
for Gene Ontology and pathway analysis.

Immunoprecipitation and protein mass spectrometry
HA immunoprecipitation followed by mass spectrometric analysis was 
performed as previously described (Behrends et al., 2010). In brief, 
293T-REx cells expressing HA-tagged proteins for 24 h were infected 
with CV for 7 h at an MOI of 2 or left uninfected before they were har-
vested and frozen at −80°C. Subsequently, cells were thawed and lysed 
with ice-cold MCLB buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 0.5% 
NP-40, and complete EDTA-free protease inhibitor tablets; Roche), 
cleared through 0.45-µm spin filters (EMD Millipore), and immuno-
precipitated using anti–HA-agarose (Sigma-Aldrich) overnight. After 
intensive washing, proteins were eluted with HA peptide (250 µg/ml; 
Sigma-Aldrich) and precipitated with TCA (Sigma-Aldrich), followed 
by digestion with trypsin (Promega) and desalting by custom-made 
stage tips. Samples were analyzed in technical duplicates on a LTQ 
Velos (Thermo Fisher Scientific), and spectra were identified as pre-
viously described (Huttlin et al., 2010). For CompPASS analysis, we 
used 142 unrelated bait proteins that were all previously processed in 
the same way (Sowa et al., 2009; Behrends et al., 2010). Weighted and 
normalized D-scores (WDN-scores) were calculated based on average 
peptide spectral matches (APSMs). Proteins with WDN ≥ 1 and APSM 
≥ 2 were considered as new interacting proteins.

Immunofluorescence and confocal microscopy
Cells were fixed with 4% PFA and washed and blocked with blocking 
buffer (PBS, 1% bovine serum albumin, and 0.1% saponin). Primary 
and secondary antibodies were diluted in the blocking buffer and in-
cubated for 1 h. Nuclei were stained with Hoechst 33342 during the 
incubation with the secondary antibody for automated image acqui-
sition. Alternatively, nuclei were stained with DAPI for confocal mi-
croscopy. Confocal microscopy was performed at room temperature 
using a laser-scanning microscope 700 (ZEI​SS) with a 63× 1.4 DIC 
Plan-Apochromat oil-immersion objective. ZEN digital imaging soft-
ware (ZEI​SS) was used for image acquisition and processing of the 
images. All images were exported as TIFF images, and figures were 
finalized in Adobe Illustrator (Adobe).

Automated image acquisition
A Cellomics Arrayscan VTI HCS Reader (Thermo Fisher Scientific) 
was used to acquire cell images in the Hoechst, FITC and TRI​TC 
filters using either the 20×, 10×, or 5× lens for automated fluores-
cence signal acquisition.

A minimum of 400 cells per experiment was analyzed using the 
Cellomics SpotDetector V3 algorithm to determine the mean number 
of p62 and LC3 puncta per cell as well as the mean number of LC3 
puncta area per cell. The Hoechst channel was used to set the autofo-
cus; LC3 puncta were detected using the FITC filter, and p62 puncta 
were detected using the TRI​TC filter. An equal fixed exposure time 
was automatically set for all the samples, and LC3 and p62 puncta 
were detected in a cell area that excluded the nucleus. The numbers 
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of nuclei (valid object count), LC3 and p62 puncta per cell (spot per 
cell), and LC3 and p62 puncta area per cell (spot area per cell) were 
counted using this approach. To assess cell infection rate, cells were 
stained with either anti-capsid antibody when infected with EMCV 
or with anti-VP1 or anti-2bc antibodies, when infected with CV, 
before to image 5–30 fields of cells per sample using the Hoechst, 
FITC, or TRI​TC filters. The percentage of EMCV- or CV-positive 
cells was determined by analyzing the collected images using the cell 
counter application in ImageJ.

Cell death measurement
U2OS, HeLa or HEK293T-REx cells were infected at an MOI of 0.01 
with CVB3 or an MOI of 0.1 with EMCV, EV71, EMCV-Zn, or CVA21 
in DMEM for 2 h before replacing it with fresh DMEM supplemented 
with 100 U/ml penicillin, 100 µg/ml streptomycin, and 10% FCS and 
continuing the incubation for an additional 24–48 h. Supernatants were 
collected to determine the virus titer while cells were fixed with 3.7% 
PFA and cell nuclei were stained with Hoechst33342 and processed for 
automated image acquisition and analysis in the following way. The 
number of cells from four fields per well was determined by count-
ing the number of nuclei using the Cellomics Arrayscan VTI HCS 
Reader with a 5× objective. The percentage of surviving cells in each 
sample was calculated by dividing the number of infected cells with 
that of uninfected cells.

Electron microscopy
U2OS cells were transfected with control siRNA or ATG13 siRNA for 
48 h and infected with CV for 7 h at an MOI of 1. After a 2-h fixation 
at room temperature in 2% PFA and 2.5% glutaraldehyde in 0.1 M 
Na-cacodylate buffer, pH 7.4, cells were embedded in epon resin as 
previously described (Verheije et al., 2008). Subsequently, 70-nm sec-
tions were obtained using an UC7 Leica Ultra-microtome and stained 
with uranyl acetate and lead citrate as previously described (Verheije 
et al., 2008). Cell sections were analyzed using an 80-kV transmis-
sion electron microscope (CM100; FEI). Two independent grids were 
used to perform the counting analysis of 125 cells per condition in 
total. Three different categories of membranous rearrangements were 
identified in CV-infected cells and defined as follows: category 1, 
closely packed, elongated, regular shaped single-, double-, or multi-
membrane vesicles; category 2, closely packed, irregular shaped, sin-
gle-membrane vesicles with a light content; and category 3, irregular, 
collapsed membrane clusters.

Statistical analyses
Statistical significance was evaluated using two-tailed heteroscedastic 
t testing before calculating the p-values. Individual data points from 
each independent experiment (the number of the independent exper-
iments is indicated in the figure legends) were used for the calcula-
tion of the significance.

Online supplemental material
Figs. S1 and S2 and Table S5 recapitulate the siRNA screen 
results for every individual virus. Fig. S3 shows the deconvolution 
experiments of the siRNA probes. Fig. S4 depicts the virus 
replication experiments upon ATG13 depletion. Fig. S5 and Table 
S6 resume the results of the MS analysis of FIP200 and ATG13 
binding partners in CV-infected and uninfected cells. Fig. S6 shows 
the immunofluorescence- and EM-based localization studies of 
EMCV and CV replication structures. Tables S1 and S2 list the 
genes that are targeted in the siRNA screen. Table S3 lists the real-
time PCR primers that were used in the study. Table S4 lists all 
the siRNA sequences used in this study. Table S7 collects all the 

RNA sequencing data. Online supplemental material is available at  
http​://www​.jcb​.org​/cgi​/content​/full​/jcb​.201602046​/DC1.
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